31 research outputs found

    The Rooster and the Syntactic Bracket

    Get PDF
    We propose an extension of pure type systems with an algebraic presentation of inductive and co-inductive type families with proper indices. This type theory supports coercions toward from smaller sorts to bigger sorts via explicit type construction, as well as impredicative sorts. Type families in impredicative sorts are constructed with a bracketing operation. The necessary restrictions of pattern-matching from impredicative sorts to types are confined to the bracketing construct. This type theory gives an alternative presentation to the calculus of inductive constructions on which the Coq proof assistant is an implementation.Comment: To appear in the proceedings of the 19th International Conference on Types for Proofs and Program

    An abstract type for constructing tactics in Coq

    Get PDF
    International audienceThe Coq proof assistant is a large development, a lot of which happens to be more or less dependent on the type of tactics. To be able to perform tweaks in this type more easily in the future, we propose an API for building tactics which doesn't need to expose the type of tactics and yet has a fairly small amount of primitives. This API accompanies an entirely new implementation of the core tactic engine of Coq which aims at handling more gracefully existential variables (aka. metavariables) in proofs - like in more recent proof assistants like Matita and Agda2. We shall, then, leverage this newly acquired independence of the concrete type of tactics from the API to add backtracking abilities

    A proof of strong normalisation using domain theory

    Get PDF
    Ulrich Berger presented a powerful proof of strong normalisation using domains, in particular it simplifies significantly Tait's proof of strong normalisation of Spector's bar recursion. The main contribution of this paper is to show that, using ideas from intersection types and Martin-Lof's domain interpretation of type theory one can in turn simplify further U. Berger's argument. We build a domain model for an untyped programming language where U. Berger has an interpretation only for typed terms or alternatively has an interpretation for untyped terms but need an extra condition to deduce strong normalisation. As a main application, we show that Martin-L\"{o}f dependent type theory extended with a program for Spector double negation shift.Comment: 16 page

    Extending FeatherTrait Java with Interfaces

    Get PDF
    International audienceIn the context of Featherweight Java by Igarashi, Pierce, and Wadler, and its recent extension FeatherTrait Java (FTJ) by the authors, we investigate classes that can be extended with trait composition. A trait is a collection of methods, i.e. behaviors without state; it can be viewed as an "incomplete stateless class" ie, an interface with some already written behavior. Traits can be composed in any order, but only make sense when "imported" by a class that provides state variables and additional methods to disambiguate conflicting names arising between the imported traits. We introduce FeatherTrait Java with interfaces (iFTJ), where traits need to be typechecked only once, which is necessary for compiling them in isolation, and considering them as regular types, like Java-interfaces with a behavioral content

    Linear Haskell: practical linearity in a higher-order polymorphic language

    Get PDF
    Linear type systems have a long and storied history, but not a clear path forward to integrate with existing languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library. Only then can the benefits of linear types permeate conventional functional programming. Rather than bifurcate types into linear and non-linear counterparts, we instead attach linearity to function arrows. Linear functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values. To demonstrate the efficacy of our linear type system - both how easy it can be integrated in an existing language implementation and how streamlined it makes it to write programs with linear types - we implemented our type system in GHC, the leading Haskell compiler, and demonstrate two kinds of applications of linear types: mutable data with pure interfaces; and enforcing protocols in I/O-performing functions
    corecore